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THE COMPUTATION OF STATIONARY DISTRIBUTIONS

OF MARKOV CHAINS THROUGH PERTURBATIONS

by

Jeffrey J. Hunter
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University of Auckland
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Department of Statistics
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ABSTRACT

An algorithmic procedure, for the determination of the stationary

distribution of a finite, m-state, irreducible Markov chain, that does not

require the use of methods for solving systems of linear equations, is

presented. The technique is based upon a succession of m, rank one,

- .,': perturbations of the trivial doubly stochastic matrix whose known steady state

vector is updated at each stage to yield the required stationary probability

vector.
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1. Introduction

In recent years, widespread attention has been given to the computation of

stationary distributions of Markov chains. A variety of methods have been

%ON suggested and implemented. Before considering an alternative way for finding

such distributions, it is of interest to give a brief survey of the techniques

-, - that have been employed.

Paige, Styan and Wachter (1975) presented a comprehensive survey of eight

different algorithms involving a variety of procedures including the use of

generalized inverses, rank reduction, least squares and power methods. Their

recommendation was a direct method that involved transforming the singular set

of stationary equations into a non-singular system using a rank one modification

followed by Gaussian elimination with row pivoting. A further study by Harrod

and Plemmons (1984) provided another direct approach based upon the LU

factorization using Gaussian elimination without pivoting.

Iterative techniques and approximation methods have been surveyed by Koury,

McAllister and Stewart (1984). When the transition matrix is large and exhibits

a nearly completely decomposable structure it is shown that a method of

*"aggregation" can be combined with point and block iterative techniques to

N. produce methods which converge rapidly to the stationary probability vector.

0. Sheskin (1985) presented a partitioning algorithm that used a matrix

reduction routine that partitions the transition matrix to create a sequence of

smaller order transition matrices followed by a vector enlargement routine that

enables the components of the steady state vector to be determined sequentially.

A related procedure was developed by Grassmann. Taksar and Heyman (1985) using

the theory of regenerative processes. They derived relationships between the

steady state probabilities which are then used to develop a numerical algorithm

to find these probabilities. Both of these latter two techniques appear to be,

J.:. .. . . ... . . .. . . . . .
-: ::''" " :" '!.:::: ... :::::i.i-::i.-::":i..'!-:" d. ii i ,'"ii::ii}i:i:!!::"- ..; :, i ..!: ::::::::::::::::::::::::::"i, ".>-:-. ': ." i ..: S~ri -:. L ::! V



@. 2

in effect, modifications of Gaussian elimination.

More recently, Meyer (1987). has utilised the concept of "stochastic

complementation" whereby an irreducible chain is uncoupled into smaller

irreducible chains whose stationary distributions can be coupled back together

to produce the stationary distribution of the original chain.

In this paper an entirely new approach involving the analysis of perturbed

Markov chains is considered. In Hunter (1986) techniques for updating the

stationary distribution of a finite irreducible Markov chain, following a rank

one perturbation of its transition matrix, were presented. In this current

. paper, these techniques are utilised, to construct a general procedure for

determining the stationary distribution of any finite irreducible Markov chain.

• A significant feature of the proposed algorithm is that at no stage does a

system of linear equations have to be solved and consequently there is no

reliance upon computer subroutines for matrix inversion or, the more generally

accepted method of solution, Gaussian elimination with or without pivoting.

The basic idea is very simple. Suppose the steady state probability vector

r' of an m-state irreducible Markov chain with given transition matrix P is

required. Let P be the transition matrix of another irreducible, m-state,o0

Markov chain with known stationary probability vector w'. By replacing,
.0

"-'" successively, the elements of each row of P with the corresponding row elements

as specified by P and recomputing the stationary probability vector of the

resultant perturbed transition matrix, the vector r' can be transformed, in m

stages, to r', by a series of m updates.

As the irreducibility of a Markov chain is governed by the location of the

positive entries in its transition matrix, to ensure the irreducibility of each

perturbed Markov chain it is sufficient to commence with P containing positive

elements placed at least in the same position as those in P.

,5,o
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Consider starting with the trivial doubly stochastic matrix P with each
0

element having the value 1/m, so that P = ee'/m, where e' = (1,1 1) is a
0

vector of ones. As can be easily shown, ir' = e'/m.
~0 ,

For i=1,2 ... m. let e be the i thelementary (column) vector with a one in
th" th

the ith position and zeroes elsewhere. Let p: =eP be the ith row of P and let

P = P + e(1.1)

- where b' = p' - e'/m.

Let r' be the stationary probability vector associated with the Markov".-i

e ¢. m

chain with transition matrix Pi' and, since P = I e p ' = P r is in fact the
I i i -Jn

0 .required vector rr.

1 "2. General Theory

The construction of the algorithm is based upon the following results.

Theorem 2.1: Let P be the transition matrix of a finite irreducible Markov
I

chain with stationary probability vector r'.

(a) I - P + t u is non-singular if and only if u'e # 0 and r't. # 0.

(b) Under the conditions of (a),

"i = a/ae , (2.1)

where a u'I - P. + t.u] (2.2)- " .a~i =1 ~I

P.'

Proof: For (a) see Theorem 3.3 in Hunter (1982) and for (b) see Corollary 4.1.2

in Hunter (1982). 0

0'

.Is

N."-0.%"
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Theorem 2.2 If X is non-singular and b'X a X -1, then

X_ 1 ab ' X 1

-1 X-1 ___ __

(X + ab') =X - +b'X 1 a (2.3)

,.'%. -"

Proof. This is the Sherman-Morrison formula. See Golub and Van Loan (1983) p3 .

-, Suppose that, following the i t h perturbation, the stationary probability

vector 7r' has been found for the Markov chain with transition matrix P., as
1I 1

given by (1.1). by using the procedure described by Theorem 2.1(b) for suitable

choices of ti and u..

In Hunter (1986) it was shown that it is possible to find an expression for

T lassociated with P using the same procedure outlined in Theorem 2.1(b),-i'l 3-I

by choosing the t and u in such a way that [I -P + t u can be
,i+l ~i+l Pi+1 i+li+l

determined from the earlier deduced expression [I - Pi + t u - 1
. without

performing an additional matrix inversion.

For the particular situation under consideration, for --0,1. m-1, if

t and ui+ u + b where b is given by (1.2). then, from (1.1),

P t u

i+1 + i+lj+l =  I - P i +li'

= i + ~ii + (ii+l - t)ul" (2.4)

Now if [I - P1 + t u"] exists, from the proof of Theorem 3.3 in Hunter (1982).

+ -

6i'.

%l %__
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Thus, using (2.3). (2.4) and (2.5), if A. [I P. + t.u:] exists.:., 1 1

'if

~1

A.l i= + (t. - t+ ) ].(26
== %4'l

*- Equation (2.6) is ideally suited for recursive operations once an initial

inverse Ao = [I - Po - t u*] has been determined. However, because of the

form of P that has been selected, if t = e and u' = e'/m, no matrix inverse_~ e.-o 0 0

has to be computed since, in this instance,

I-P + tu' =I-ee'/m + ee'/m=I.
0 oo

Furthermore, using (2.2), a' u' = e'/m.. 0 ~0

and, from (2.1), r' = e'/m.

The basic algorithmic procedure now follows:

Let t = e, u' = e'/m, A = I. r' = e'/m.~0 ~0 ~ 0 ' 0

For i=1,2,m, let t. = e and u' = u' + p- e'/m.

Compute A i- + (-i-1 (2.7)
A. -1A[I (t-1 t.1r ,/ri-t].(27

Compute a: = uA.. (2.8)
-,1 -2., 1

Compute V: = alae (2.9)

* Then ir' = w is the stationary probability vector of the Markov chain with

transition matrix P =[P

Since the elements of any stationary probability vector are always

*-;, positive, r't and 7' t are both positive. Further, by induction, for

:., i--O,1I. .m

u e = I (2.10)

so that the conditions of Theorem 2.1 and 2.2 are satisfied.

f. 
% % %

. . . . . . . . -- p , ' ,J,,.

iO ,A'JLJ.9



* 6

3. Refinements to the algorithm

Although the procedure suggested in Section 2 will lead to the required

stationary probability vector there are some modifications that, if employed,

will lead to a more efficient procedure.

3.1 Modification to the r' computation

The ultimate aim of the algorithm is to determine 7r' = 7r'. Unless the

stationary distributions of the intermediate perturbed Markov chains are

required. some simplification can be effected by observing that (2.7) requires

-_ through its scaled version r' /lr' t . The scaling suggested by (2.9) is

not required until the final step when i=m.
Thus, for i=0,I. m-l, let

i - r / rt. _(3.1)

Then, ' = e' and for i=l,2.....m-l,

v. = u'A./u'A.e.+, (3.2)

If 7: is required then it can be recovered simply. For 1-0.. m-l,

-t, = V/V:e . (3.3)

At the final step, compute r' using (2.8) and (2.9).

. 3.2 Modification to the A computation

With the notation introduced in Section 3.1, it is easily seen that the

early terms in the {A,} sequence are given, after simplification, as

0

A =A + (e - el)v' (3.4)1 0 ~ 1 0

A2 A 1 + (e- 1 , (3.5)

A3 =A 2 + [(1 - v1 3 )e 1 + - (3.6)

lirAli
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A 4 = A3 + [{' -1 V (-v 13 )V2 4}1

'C+ (V 14 - v13 V24 )!2 ' -v24!3 3  (3.7)

* where v.. H v'e.. so that v =1 for i=i,2,.. -i.l

The above results provide motivation for the following theorem.

Theorem 3.1: For n=-0,l,. rn-i,

A -~ =A n+ Bn (3.S)

where B = A(e - e +)v =b v' (3.9)

with e ae, so that b = e - e1 and for n=1.2,.rn,-i.
_0 _0 - -

b =b e + ... +b e - e .(3.10)

- Proof: The theorem is obviously true by inspection, from (3.4) to (3.7),fo

-n--0.1.,3. Assume that (3.9) and (3.10) hold for n=0,I.l.k so that

A k+1 A k + B k = A k- + B k- + B k-

k

n=-O

* Hence

B k+1 = A k+1 (ek -e!+) I

k
= (I1+ B + I B)(~ -k+2)vk'

implying that

k n

~k+ = + (e - ee'+ I ( I b e - e +1~e
n=l m=1 nj n1n kl ,.+

Since e'(e -e )=0
-. .. Jcl !k+2)

k n
b e e + I ( Ibe -e v(
Jc+l Z~k+l !k+2 nl mn- .,n+l(n.k+i n.k+2)

k k
~~+ ~+2+ 2 b (Vk ~ -V 1 - )}e

!k~l !k+2 m=l n=m nnkl-nk2 M

k+ 1

-m2 (Vml, k+i - lk+2 )e MT

.m5

6%
V %%



showing that klis a linear combination of e, . e . with +2having

coefficient -1. Thus (3.10) is true for n=k+l and the theorem follows by

induction.

Observe that

k+ 1
b I ~b e -e ( 2

Zk1 m=l m~k+l-m Jc+2' (.2

k
where b 2 b b(Vkl v 33

1,k+1 _ 1,n nkl n.k+2 '(.13

b ~=1v ,(ic 1.(M

bk+l~k+l =Vk.k+2 ' snevk,k+l1)

and for m=2,..

k

bm,k+1 - m n (Vn,k+1 n,k+l (.5
n=m- 1

0 Note that

bB =b v'= in [v~ V V**n Zn- 1 2'' u

b
n

0

0

by by by

2n n1 2n n2 ~ 2n run

by 1  bV ~ . by (3.16)

"n1 nV2  run
O 0 ... 0

0 0 ... 0

Thus, in the matrix B all the entries in rows numbered n+2,..m are zero.
n

Obviously, this has considerable significance in the calculation of the matrices

A, (i=2.,m) as required in the algorithm.

I" -
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The updating process, given by (2.7). can be replaced for i=2. m, by0J
A =A + B (3.1T)

i i-1 i-11

where B _ A (e -e e )(3

is such that only the first i rows of Bi_ are computed with the remaining

entries set equal to zero.

Furthermore, from (3.16), some of the rows of Bn have a special form and do

n-:" not require computation. In particular the (n+l)th row is simply -u' while, -

th
from (3.14), the n row is v times C.

Note also that the (n+l)st column of B is b since v =1

n .n n,n+l

There are also some other checks that can be applied.

Theorem 3.2: For i=1,2,. m,

A.e. = e, (3.19)
1 ..
1 e'A. = e, (3.20)

e'B. = 0'. (3.21)

Proof: Since A. = [I - P. + t.u] , equation (3.17) of Hunter (1982) implies

that

e
A.t. _ e
1_1 u. e

yielding (3.19) with t. = e..

Equation (3.20) is obviously true when i=l since

e'A 1 = e'[I + (e - el)e' ]

= e' + (m-l)e'

-me

Thus, by induction, if (3.20) is true for i=1,2,.... from (2.7) and

(3.1).

. 4. ".. e*

. . . . . . . . . . . . . . . .. . .



* 10

1 1
-em- - e Ak[1 + (! - ) ]

+ (!ek)v]

e ' - e'e ,)v" e'

Thus (3.20) and hence also (3.21) follow. 0

A consequence of Theorem 3.2 is that the ith column of A. consists solely

of unit elements while the sum of the elements of each column of B. is zero.

3.3 Modification to the a. computation

Although the {A.} (iA, 0,)m) sequence plays an integral role in the

procedure, the matrices A. are required only to obtain the sequence of vectors>¢., 1

* a' u'A. and hence the vectors v:. Thus is is worth examining whether it is

possible to dispense with explicit calculation of the A. by deriving the {a'}

(i=l,2 .. m) sequence recursively.

Theorem 3.3: For i--0,l,2. nm-l.

ai v -e' + p- Ai . (3.22)
-i+1 -. -+1 i+1

Proof: First observe that, from (2.8),

a' ui A 'A

• so that (3.22) holds for i--O since v' = e'.

-~0

In general, for i=I,2,...m-l, from (2.8).

~i+lAi+l '

[u - (e/m) + p'+l]Ai+l (3.23)

'" Now u'A '[ A, (+- +i+l ' '

Sa-: + a(e ,
= a' + - a

+ (a a 1 1 u (3.24)0'i i i+l)Vi

-N, A



where a.. =a'e.. But, from (3.19) arid (2.10).

a.. = u'A.e. = u'e =1 ,(3.25)

and, since from (3.2) and (2.8). v' = a'/a. (3.24) becomes

u:'A. V (3.26)

Equation (3.22) now follows from (3.23) upon substitution of (3.26) and

(3.20). 0

Theorem 3.3 shows that in updating from a: to a' the term p: A i1must

be computed. The calculations of a',a . * require, successively. Pj.T

and for a: this is the first time p' the (i+1)th row of P is involved.
4 ..i+l i l

Although. p: A can be expressed in terms of A. as can be seen from the
.-i+1 i+1 1'

*next theorem, very little advantage is gained since such terms are required for

each iOl ml

Theorem 3.4: ForiO, . n,

p A 'A + -: (p, A V (3.27)
i~ ~ i+1 ~ i _ (i+1 A~~ e i

Proof: For i=0O,

'A + (e e- e*

*p' + (p'e)e' -(p'e )e'

and the result follows, since pe= 1, v' = e' and A =I.
_0 0

In general, for i=l,2,.m-l. from (2.7) and (3.1).

Ai+ 1+ £+ 1[A, Aje, e +)v']
p'~ A+ = + -i i,

Equation (3.27) follows since, from (3.19).

p e 1
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As a consequence of Theorem 3.3. it is suggested that (2.8) in the

algorithm be replaced by (3.22).

3.4 Modification to the ri' = rr' computation

- At the final step of the algorithm A can be computed and consequently ir
m -MJ

derived as a'/a'e where a' = u'A I However, A need not be explicitly
m, -M-.j-Mm m

4,

determined since, from Theorem 3.3 and 3.4,

a . = . ' 4

-M --

where pA = Am + v'_- (pAml )v_

* 4. Recommended procedure

As a consequence of the refinements discussed in Section 3, it is suggested

that the algorithm be constructed as follows:

1. Let A1 =1I+ (e-~ '

2. Let a' =p'A.

*3. For i=1,2.,m-2, compute

A(a) v' a'/a'e

(b) B. A A(e - eil)v

(c) A i+l A. + B.
1 1

.4..(d) a' =v -e+ p+A,

4. Let v -a' /a' e
~M-1 - M-1 ,.-m-ljn

5. Let a' = 2v' - e' + p'A 1  (p'A e)v'

6. Let 7r' = r' =a*/a'e
,,-M -M -

eet
.4.
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The order of the number of arithmetic operations (multiplication and

division) required to determine i' can be estimated as follows. The computation

of the B. and the p:A. have a dominant effect on the number of operations
V 1 ..i 1

required. Since A.(e i - e ) is effectively the difference of two columns of

A.. only mi operations are required to determine B., taking into consideration1 1

that B. has only (i+l) non-zero rows, and, as a consequence of (3.21), that the1

elements of one row can be found from the other rows using the fact that each

column sums to zero. On the other hand, for a general transition matrix, p'A.

2will require m operations, although this can be reduced to m(m-1) since the ith

',, element of this row vector, p.Ae. = p:e = 1. (by using (3.19)). Since the

I
other calculations required are relatively insignificant in comparison, the

total number of operations is of the order of

m-1 m 2 3
2 mi + 2 m(m-1) = 3m (m-1)/2. i.e. of order 3m /2.

i=l i=l

To solve for the stationary distribution directly using Gaussian

elimination requires of the order of 4m3 /3, while to solve directly using a

matrix inversion routine requires of the order of 2m3 operations. (see Isaacson

and Keller (1966)).

The procedure is, in effect, finding the stationary distribution of m

different irreducible Markov chains and consequently the routine that has been

developed offers much more information than other techniques currently

available.

Although it has been suggested that the algorithm proceed row by row, there

is no necessity to adhere to a strict sequential ordering of the rows. The

procedure as outlined by (2.7), (2.8) and (2.9) can e.:sily be adapted to such

changes by altering the t and u'. A consequence of this is that the effect of

N.,-

aN.
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changing selected transition probabilities upon the stationary distribution can

easily be determined. (See also Hunter (1986)).

The procedure also offers the opportunity to utilise the structure of

special transition matrices. For example, if the transition matrix of the chain

" is banded with p.. 0 for j<i-g and j>i+h. which occurs in some queueing

models, the calculation of p.A. will require at most (g+h)m operations and the., 1i 1

3 2
Salgorithm will require on the order of only m /2 + (g+h)m operations.

5. Structural results

In Section 3.2 expressions for the first few terms of the (A.} sequence

were derived. By using those terms and working through the first few steps of

the algorithm it can be shown, that, following simplification, for i=1,2,3,0

a. = (Wi Lp . '1~4. 51
;?'...?

-" = (ioe' + Uiljl + ... + 'ii~ i p (5.2)

V, = (Xie' + "ii+' + ii~d) + /milPli+1 + ... + .iii+l )  (5.2)

.... ~ir = (tioe+ bilP, +.. + btii6)/(",io + i + . d i )  53

where plo 1 p1 .

-'" .111=1I,

.20 = (- P11)(1 P22 ) -P12P21

;21 = 1 + p2 1 -

-22 p1 1 + P 12

'30 ( 0 p1l)(l - p22 )(1 - p3 3) p 12p2 3p 3 1  13P21P32

- P13(1 - P22)P31 - (1 - Pll)P23P32 + P 12P2 1 (l - P33 ) ,

-3 1 = P2 1( - P33+ P3 2 ) + (1 - P2 2 )(l - P3 3 + P3 1 ) + P23(P3 1 -P32

"32 = P31(P12 - P13) + P3 2 (1 - pll + P13 ) + (1 - P33 )(1 - pll + P12 ) '

.133 = (1 - P1 1 )(l - P2 2 + P23) + P 12 (P23 - P2 1 ) + PI3( - P2 2 + P21 )

%.

0 '': . . . ... .. .-.. . .-, . . .. .-.- ., .. ....-.-. ... .... - . ....- .- -- .
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The general structure exhibited by (5.1), and hence also by (5.2) and

(5.3), holds for all i1=.2,...m. [A proof by induction shows that if (5.1) and

(5.2) hold for i=l,....n then, since

P A p' [I + B + ... + B],
.n+l ,n+1 0 n

p., [I + b v + + b v'],

Sp' + ( b + ... + (pi nb

using (3.22) with i=n, a' is a linear combination of v...... v P',np i.e. of

' e''Pl ..... +I"Furthermore, the coefficient of P is unity whereby

-. establishing the general structure of a'

Note also that, from (5.1) and (3.25). a.e. = 1, for i=l.....m and thus

, io + ilPl + ... + iipi i  := ii (5.4)

Further, for i=1,2 it can be shown, by direct verification, that

4,, + Pio IPl~i+l +' + AiiPi,i+1 '= Pti+l~i+1 (55

which implies that

"" ii~l'~ +111(5.6)," ', vi ii Pi Pi+l i+l (56

and a. a'e P 1 .1 i/. (5.7)a,. ill ~i~i+1 ii

,- results that it has not been possible to establish in general.

Let (I-P)i be the leading ith order principal submatrix of I-P formed by

deleting all but the first I rows and columns then, for i=1,2,3.

-. d" *,

-io =det(I-P)1. (5.8)

0" .4 , ji P
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For the special case when m--3. with the notation used earlier in this

section, it can be verified that

a' = ,i
a ( i Pi2' P i3)/P , (i=1,2,3) (5.9)

, ... ~I ' i2' gi3)/Pi~li l

-1 ii' i2' p 1 3 )/(Pi+ i2 ) (i=l2) (5 )

=-

where

-12 = 1 - P11 + P12 = 4'22'

.13 = -Pl P13'

-23 =33 30'

Observe that r', 7i and give, respectively, the stationary probability
O1 .

vectors of the Markov chains whose transition matrices are

='pt

Pl P12  P13  Pil P1 2  P1 3  P11  P12  P13

1/3 1/3 1/3 P21 P22  P23  and P2 1 P2 2  P23

1/3 1/3 1/3 1/3 1/3 1/3 P31 P3 2  P33

,"--In examining (5.11), with 1-3, it can be shown that tl3j = .Dj (J=1,2,3).

where Dj is the determinant formed by striking out the jth row and jth column of

I-P. This leads to an expression for the stationary probability vector of a

general irreducible, three state. Markov chain as

i..' 3

,= (D1.D2.D3)/ Y D (5.12)

J1=1

-" The natural extension of (5.12) for a general finite irreducible Markov

chain is also true. such a result being attributed to Mihoc by Frechet (1950)

and rediscovered by Singer (1964).

% %-

%W %' % -I %
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Although the full details of a proof of the generalization of (5.12) using

the techniques of this paper have not been worked out, it is conjectured that

for an m-state chain p'. = mD., (a result that holds for m=2.3), so that the

procedures proposed in this paper appear to lead to an effective algorithmic

construction of Mihoc's technique.

6. Final comments

The initial choice of P as ee'/m ensures that it is possible to start with

an irreducible Markov chain whose stationary distribution is easily found

without having to compute a matrix inverse or to solve a general set of linear

equations. The fact that every element of P is specified leads to a sequence
0

of matrices A A that are "dense". Is it possible to start with a
1' 2...

different Markov chain, say one that is relatively sparse, whose stationary

distribution is well known and such that, for the early recursions, the

equivalent sequence A1, A 2-. retains such a sparsity property?
is'a The periodic Markov chain with entries (°) =1, (i=1,2-m-1), and p
.- ii+ ... ..

is a potential candidate for P , whose stationary probability vector is also
0

v' = e'/m. Even if t and u can be specified so that A = [I - P + t u']
-0 ,0 _0 0 -0-0

has a simple structure much care would be required in carrying out any

sequential row modification with this P . For example if, for the specified P
0

, transition matrix, p = 0 then state 2 is never reached in the Markov chain
i12

with transition matrix PI violating the required irreducibility property of P1.

The major advantage in choosing P 0 =ee'/m is that the irreducibility of each

P. transition matrix is guaranteed at each step of the procedure.

The next stage to be taken with the procedures proposed in this paper is to

carry out some numerical studies and to compare the computational speed and

accuracy with some of the other procedures surveyed in the initial section.

0'

- *
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